SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:cth ;pers:(Johnsson Filip 1960);hsvcat:4"

Sökning: LAR1:cth > Johnsson Filip 1960 > Lantbruksvetenskap

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Cintas Sanchez, Olivia, 1982, et al. (författare)
  • Geospatial supply-demand modeling of lignocellulosic biomass for electricity and biofuels in the European Union
  • 2021
  • Ingår i: Biomass and Bioenergy. - : Elsevier BV. - 1873-2909 .- 0961-9534. ; 144
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioenergy can contribute to achieving European Union (EU) climate targets while mitigating impacts from current agricultural land use. A GIS-based modeling framework (1000 m resolution) is employed to match biomass supply (forest and agricultural residues, complemented by lignocellulosic energy crops where needed) with biomass demand for either electricity or bio-oil production on sites currently used for coal power in the EU-28, Norway, and Switzerland. The framework matches supply and demand based on minimizing the field-to-gate costs and is used to provide geographically explicit information on (i) plant-gate supply cost; (ii) CO2 savings; and (iii) potential mitigation opportunities for soil erosion, flooding, and eutrophication resulting from the introduction of energy crops on cropland. Converting all suitable coal power plants to biomass and assuming that biomass is sourced within a transport distance of 300 km, would produce an estimated 150 TW h biomass-derived electricity, using 1365 PJ biomass, including biomass from energy crops grown on 6 Mha. Using all existing coal power sites for bio-oil production in 100-MW pyrolysis units could produce 820 PJ of bio-oil, using 1260 PJ biomass, including biomass from energy crops grown on 1.8 Mha. Using biomass to generate electricity would correspond to an emissions reduction of 135 MtCO2, while using biomass to produce bio-oil to substitute for crude oil would correspond to a reduction of 59 MtCO2. In addition, energy crops can have a positive effect on soil organic carbon in most of the analyzed countries. The mitigation opportunities investigated range from marginal to high depending on location.
  •  
4.
  • Cañete Vela, Isabel, 1992, et al. (författare)
  • Co-recycling of natural and synthetic carbon materials for a sustainable circular economy
  • 2022
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526. ; 365
  • Tidskriftsartikel (refereegranskat)abstract
    • Circular economy approaches are commonly depicted by two cycles, where the biological cycle is associated with regeneration in the biosphere and the technical cycle with reuse, refurbishment, and recycling to maintain value and maximize material recovery. This work, instead, presents an alternative vision to the management of carbonbased materials that integrates the two cycles and enables the phasing-out of fossil carbon from the material system. The aim is to investigate the benefits and global potential of a co-recycling system, as an alternative to conventional recycling systems that separate biomass-based materials (e.g., wood, paper) from fossil-based materials (e.g., plastics). Thermochemical recycling technologies enable the conversion of carbon-based waste materials into high-quality synthetic products, promoting circularity and avoiding carbon losses such as carbon emissions and waste accumulation in landfills and nature. Here, the construction and analysis of co-recycling scenarios show how the deployment of thermochemical recycling technologies can decouple the material system from fossil resource extraction. Furthermore, energy use is reduced if pyrolysis and/or gasification are included in the portfolio of recycling technologies. In a decarbonized energy system, deployment of co-recycling can lead to near-zero carbon emissions, while in more carbon-intensive energy systems the choice of thermochemical recycling route is key to limiting carbon emissions.
  •  
5.
  • Cintas Sanchez, Olivia, 1982, et al. (författare)
  • Geospatial supply-demand modeling of biomass residues for co-firing in European coal power plants
  • 2018
  • Ingår i: GCB Bioenergy. - : Wiley. - 1757-1707 .- 1757-1693. ; 10:11, s. 786-803
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass co‐firing with coal is a near‐term option to displace fossil fuels and can facilitate development of biomass conversion and the build‐out of biomass supply infrastructure. A GIS‐based modeling framework (EU‐28, Norway, and Switzerland) is used to quantify and localize biomass demand for co‐firing in coal power plants and agricultural and forest residue supply potentials; supply and demand are then matched based on minimizing the total biomass transport costs (field‐to‐gate). Key datasets (e.g., land cover, land use, wood production) are available at 1,000 m or higher resolution, while some data (e.g., simulated yields) and assumptions (e.g., crop harvest index) have lower resolution and were re‐sampled to allow modeling at 1,000 m resolution. Biomass demand for co‐firing is estimated at 184 PJ in 2020, corresponding to an emissions reduction of 18 Mt CO2. In all countries except Italy and Spain, the sum of the forest and agricultural residues available at less than 300 km from a co‐firing plant exceeds the assessed biomass demand. The total cost of transporting residues to these plants is reduced if agricultural residues can be used, since transport distances are shorter. The total volume of forest residues less than 300 km from a co‐firing plant corresponds to about half of the assessed biomass demand. Almost 70% of the total biomass demand for co‐firing is found in Germany and Poland. The volumes of domestic forest residues in Germany (Poland) available within the cost range 2‐5 (1.5‐3.5) €/GJ biomass correspond to about 30% (70%) of the biomass demand. The volumes of domestic forest and agricultural residues in Germany (Poland) within the cost range 2‐4 (below 2) €/GJ biomass exceed the biomass demand for co‐firing. Half of the biomass demand is located within 50 km from ports, indicating that long‐distance biomass transport by sea is in many instances an option.
  •  
6.
  • Cowie, A. L., et al. (författare)
  • Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy
  • 2021
  • Ingår i: Global Change Biology Bioenergy. - : John Wiley and Sons Inc. - 1757-1693 .- 1757-1707. ; 13:8, s. 1210-1231
  • Tidskriftsartikel (refereegranskat)abstract
    • The scientific literature contains contrasting findings about the climate effects of forest bioenergy, partly due to the wide diversity of bioenergy systems and associated contexts, but also due to differences in assessment methods. The climate effects of bioenergy must be accurately assessed to inform policy-making, but the complexity of bioenergy systems and associated land, industry and energy systems raises challenges for assessment. We examine misconceptions about climate effects of forest bioenergy and discuss important considerations in assessing these effects and devising measures to incentivize sustainable bioenergy as a component of climate policy. The temporal and spatial system boundary and the reference (counterfactual) scenarios are key methodology choices that strongly influence results. Focussing on carbon balances of individual forest stands and comparing emissions at the point of combustion neglect system-level interactions that influence the climate effects of forest bioenergy. We highlight the need for a systems approach, in assessing options and developing policy for forest bioenergy that: (1) considers the whole life cycle of bioenergy systems, including effects of the associated forest management and harvesting on landscape carbon balances; (2) identifies how forest bioenergy can best be deployed to support energy system transformation required to achieve climate goals; and (3) incentivizes those forest bioenergy systems that augment the mitigation value of the forest sector as a whole. Emphasis on short-term emissions reduction targets can lead to decisions that make medium- to long-term climate goals more difficult to achieve. The most important climate change mitigation measure is the transformation of energy, industry and transport systems so that fossil carbon remains underground. Narrow perspectives obscure the significant role that bioenergy can play by displacing fossil fuels now, and supporting energy system transition. Greater transparency and consistency is needed in greenhouse gas reporting and accounting related to bioenergy. 
  •  
7.
  • Johnsson, Filip, 1960, et al. (författare)
  • Future applications of circulating fluidized-bed technology
  • 2021
  • Ingår i: CFB 2021 - Proceedings of the 13th International Conference on Fluidized Bed Technology. ; , s. 26-35
  • Konferensbidrag (refereegranskat)abstract
    • Considering the climate-change challenge, future thermal and chemical processes must by midcentury be net zero carbon emitting and promote circular processes, phasing out the uptake of fossil fuels from the earth’s crust. This paper discusses how circulating fluidized bed (CFB) technology can support such a future. We identify key processes and provide examples of challenges and need for research, demonstration and scale-up. Important CFB applications are both in well-established biomass combustion and gasification, and in novel concepts such as CO2 capture, plastic recycling and energy storage. It is concluded that large scale implementation of these CFB applications is primarily not a technical challenge but requires stronger climate policy as well as policies promoting a circular economy.
  •  
8.
  • Toktarova, Alla, 1992, et al. (författare)
  • Pathways for Low-Carbon Transition of the Steel Industry-A Swedish Case Study
  • 2020
  • Ingår i: Energies. - : MDPI AG. - 1996-1073 .- 1996-1073. ; 13:15
  • Tidskriftsartikel (refereegranskat)abstract
    • The concept of techno-economic pathways is used to investigate the potential implementation of CO(2)abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF), where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO(2)emission reductions of 83% in 2045 compared to CO(2)emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2), could result in almost fossil-free steel production, and Sweden could achieve a 10% reduction in total CO(2)emissions. Finally, (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI), could lead to decarbonization of the steel industry outside Sweden, assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (6)
rapport (1)
konferensbidrag (1)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (1)
populärvet., debatt m.m. (1)
Författare/redaktör
Berndes, Göran, 1966 (6)
Thunman, Henrik, 197 ... (3)
Cintas Sanchez, Oliv ... (2)
Bergh, Johan (2)
Egnell, Gustaf (2)
visa fler...
Englund, Oskar, 1982 (2)
Gustavsson, Leif (1)
Karlsson, Mikael (1)
Lindroth, Anders (1)
Hansson, Per-Anders (1)
Börjesson, Pål (1)
Göransson, Lisa, 198 ... (1)
Olsson, Bengt (1)
Lundmark, Tomas (1)
Nilsson, Urban (1)
Lundblad, Mattias (1)
Pallarès, David, 197 ... (1)
Ågren, Göran (1)
Wijkman, Anders (1)
Cowie, Annette (1)
Kåberger, Tomas, 196 ... (1)
Brandão, Miguel (1)
Hyvönen, Riitta (1)
Luyssaert, Sebastiaa ... (1)
Berdugo Vilches, Ter ... (1)
Odenberger, Mikael, ... (1)
Abt, Bob (1)
Goldmann, Mattias (1)
Kalliokoski, Tuomo (1)
Kurz, Werner (1)
Nabuurs, Gert-Jan (1)
Pettersson, Hans (1)
Strömgren, Monika (1)
Toktarova, Alla, 199 ... (1)
George, B. (1)
Gustavsson, Leif, 19 ... (1)
Lamers, P. (1)
Rootzén, Johan, 1978 (1)
Schaub, M. (1)
Cherubini, F. (1)
Kraxner, F. (1)
Cañete Vela, Isabel, ... (1)
Cutz, Luis, 1986 (1)
Soimakallio, S. (1)
Cowie, A. L. (1)
Bentsen, N. S. (1)
Hanewinkel, M. (1)
Harris, Z. M. (1)
Junginger, M. (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (8)
Mittuniversitetet (2)
Göteborgs universitet (1)
Kungliga Tekniska Högskolan (1)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Teknik (6)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy